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Abstract6

We construct a data-driven model for solar irradiation based on satellite observations. The model
yields probabilistic estimates of the irradiation field every thirty minutes starting from two con-
secutive satellite measurements. The probabilistic nature of the model captures prediction uncer-
tainties and can therefore be used by solar energy producers to quantify the operation risks. The
model is simple to implement and can make predictions in realtime with minimal computational
resources. To deal with the high-dimensionality of the satellite data, we construct a reduced rep-
resentation using factor analysis. Then, we model the dynamics of the reduced representation
as a discrete (30-minute interval) dynamical system. In order to convey information about the
movement of the irradiation field, the dynamical system has a two-step delay. The dynamics are
represented in a nonlinear, nonparameteric way by a recursive Gaussian process. The predictions
of the model are compared with observed satellite data as well as with a similar model that uses
only ground observations at the prediction site. We conclude that using satellite data in an area
including the prediction site signficantly improves the prediction compared with models using
only ground observation site data.
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1. Introduction11

Solar irradiation is the amount of power per square meter that reaches the Earth from the12

Sun. In solar energy applications, part of the solar irradiation can be converted to electricity.13

In contrast to conventional power sources such as coal or gas, solar irradiation is volatile and14

uncontrollable by the user. The two most important factors of the solar irradiation variability are15

the movement of the Sun and weather fluctuations. The former can be captured mathematically16

to great accuracy, because it is a deterministic effect. The latter is a chaotic effect, and hence the17

main cause for the difficulties associated with forecasting solar irradiation.18

All the stages of a solar-power conversion project need to take into account the risks asso-19

ciated with solar irradiation. For the feasibility and design phases of the project, historical data20

can be employed to quantify these risks. The risks associated with the operation phase, how-21

ever, require the ability to make short-term predictions (from 1 to 8 hours ahead) of the solar22

irradiation.23

The most widely used solar irradiation forecasting methodologies are those that rely only on24

pointwise ground measurements of the solar irradiation. The reason is that ground measurements25
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are readily available at any solar energy production plant. Mathematically, these techniques fall26

into the category of single-value time series analysis. Time series analysis methods include27

the autoregressive integrated moving average (ARIMA) processes [1] (see [2] for a first-order28

autoregressive model (AR(1)) and [3, Ch. 15.2.2.] for ARIMA examples), and artificial neural29

networks (ANNs) [4]. The accuracy of the predictions of these models degrades rapidly as the30

forecasting window is increased. This result is expected because the weather fluctuations exhibit31

a nonlocal behavior; see [3, Ch. 15] for a comprehensive review.32

More accurate forecasts can be achieved only if nonlocal data are taken into account. For33

short-term (0-30 minutes) forecasts, a promising approach is to use total sky imager technolo-34

gies [5]. One takes pictures of the sky from a particular site, extracts information about the35

clouds, constructs the cloud motion vectors (CMVs) and moves the image forward in time. Us-36

ing geometrical arguments and semi-empirical models, one recovers the solar irradiation from37

the cloud information at that later time. The time frame for which this approach is useful depends38

on the velocity of the clouds.39

Longer forecasts (hours to days) are feasible if satellite data are used. For forecasts ranging40

from 30 minutes to 6 hours ahead, the data-driven technique introduced in [6] may be used. As a41

first step, the semi-empirical heliostat method of [7] is used to extract cloud structure information42

from the satellite images. Then, as in the sky imager-based techniques, two consecutive images43

are compared in order to construct the CMVs. The cloud information is moved forward in time44

using the CMVs and goes through a final smoothing phase. Solar irradiation is recovered by45

again employing the heliostat method. Numerical Weather Prediction (NWP) may be used for46

forecasts of up to 6 days or longer. For example, in [3, Ch. 10] the sky-cover fraction of the U.S.47

National Digital Forecast Database is coupled with semi-empirical models to produce long-term48

forecasts of solar irradiation.49

The main disadvantage of most these aforementioned techniques is that they are difficult to50

use, and, sometimes, unable to quantify the uncertainty in their predictions. Given the current51

evolution of decision systems for energy toward incorporating stochastic representations [8], this52

may be a serious shortcoming. It is hard to see how to consistently add an uncertainty model53

to the heliostat approach. NWP models can in principle be modified to support an ensemble-54

based approach to uncertainty, but at a significant computational cost that requires a dedicated55

supercomputer [9]. Among the methods described, only the ARIMA-based methods can provide56

error bars for the predictions with a small or moderate effort. Yet, it is exactly these error bars57

that help quantify the potential risks and allow the stakeholders to properly price them.58

These considerations have motivated us to develop a fully stochastic model that can quantify59

forecast uncertainties. In addition, aiming for a model that is convenient even for lean operations,60

we propose a satellite-based model that is considerably more robust than existing ones and can61

produce predictions in realtime with minimal computational resources.62

Our model building philosophy and paper can be summarized as follows. As a first step, the63

Sun’s movement effect on the satellite observed solar irradiation field (Sec. 2.1) is removed by64

dividing it with a clear sky model (Sec. 2.2) to get the clear sky index field. Our goal is to use65

consecutive observations of the clear sky index field in order to learn its dynamics. Because of its66

high-dimensional nature, we construct a reduced-dimensionality representation of it (Sec. 2.3).67

To learn the dynamics of this low-dimensional representation, we use a nonlinear, nonparametric68

technique known as recursive Gaussian process (Sec. 2.4). Having constructed the dynamics69

of the reduced space, forecasts can be performed for an arbitrary number of time steps ahead70

(Sec. 2.5). Our recursive Gaussian process is similar in concept to the ANN used in [4]. However,71

our model is Bayesian, a key feature that enables us to make not only best estimates but also72
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probabilistic forecasts. We then present (Sec. 3) our numerical results for an 8-hours-ahead73

forecast, and we compare them pointwise with those obtained by a recursive Gaussian process74

model based only on ground observations. We observe that using satellite data significantly75

reduces the forecast uncertainties and improves the forecast itself. We attribute this improvement76

to the nonlocal information carried by the satellite images and to the space-time correlation77

between the solar irradiation at the prediction site and at neighboring sites.78

2. Methodology79

Throughout this work, we denote the solar irradiation field by I(φ, λ, t), where φ, λ and t are80

the latitude, longitude, and time, respectively. The units of I(φ, λ, t) are power per square meter.81

2.1. Observations of Solar Irradiation82

The solar irradiation field can be observed almost instantaneously by processing satellite im-83

ages. For simplicity, we restrict our attention to data coming from the continental United States84

(CONUS) scan of the GOES-13 satellite. The CONUS scan takes place almost every 30 min-85

utes and has a resolution of 1 km. The solar irradiation field is constructed by processing the86

raw data collected by the Advanced Very High Resolution Radiometer (AVHRR) via the algo-87

rithms described in [10]. This product is reported as part of the Clouds from AVHRR Extended88

(CLAVR-x, https://cimss.ssec.wisc.edu/clavr/) data and is available in realtime from89

the University of Wisconsin (ftp://ftp.ssec.wisc.edu/clavr/goes_east/processed/.90

The CLAVR-x data are available on a grid of latitudes and longitudes described by φi j and λi j for91

i = 1, . . . , Pφ, j = 1, . . . , Pλ, where Pφ and Pλ denote the number of pixels on each dimension.92

That is, at time t we observe a matrix I(t) = (Ii j(t)) of size Pφ × Pλ:93

Ii j(t) = I(φi j, λi j, t). (1)

The dimensions of the observed matrix for the CONUS scan are Pφ = 1, 900, Pλ = 3, 100. For94

computational reasons, we work with a submatrix of the CONUS scan of dimensions Pφ = Pλ =95

400 that is centered on a site of interest. We refer to this submatrix as the patch.96

The time resolution of the data is irregular. In particular, we have observations every thirty97

minutes, with the exception of 03:00, 06:00, 09:00, 12:00, 15:00, 15:30, 18:00, 21:00, and 00:0098

UTC daily as well as 17:00 UTC every Wednesday. In addition, early morning and late after-99

noon measurements are not useful, because of the very low irradiation values that are observed.100

Therefore, we drop from our dataset observations that take place during nighttime (i.e., the pe-101

riod between two hours before sunset up to two hours after sunrise the next day, where sunset102

and sunrise times are calculated for an observer standing at the center of the patch). We denote103

the times for which we actually have observations by tk, k = 1, . . .Kt. Then, our observed dataset104

consists of105

DI = {I(tk) : k = 1, . . . ,Kt} . (2)

2.2. Clear Sky Model and the Clearness Index106

The presence of daily and seasonal trends makes the direct modeling of I(φ, λ, t) problematic.107

On the one hand, the daily part is characterized by (1) no variation over night (the solar irradiation108

field is equal to zero), (2) increasing values and variance until noon, and (3) decreasing values109

and variance from noon till sunset. On the other hand, the seasonal trend is characterized by (1)110
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low values during winter and high values during summer, and (2) high variance during winter111

and low variance during summer. The change in the mean values of the field is directly chained112

to the solar zenith angle, which varies daily as well as seasonally. The higher variance during113

winter days is attributed to the rapidly changing weather conditions. To partially address these114

trends, we model the clearness index instead of the solar irradiation field. In order to properly115

define the clearness index, the concept of a clear sky model is required.116

A clear sky model approximates the expected solar irradiation when no clouds are present.117

Typically, it depends on the extraterrestrial irradiation ((W/m2) at the top of Earth’s surface), the118

solar zenith angle at a particular Earth site, the elevation of the site above sea level, the compo-119

sition of atmospheric gases such as water vapor and ozone content, and the atmospheric aerosol120

content (see [3, 2.3]). Many clear sky models may be used (e.g., [11, 12]). However, given the121

variability in the total solar irradiation due to the cloud variability, very high accuracy of the clear122

sky model is not extremely important here. We thus opt for Ineichen’s model [12], which is a sur-123

rogate of the more accurate Solis model [13]. The Ineichen model depends on the extraterrestrial124

irradiation, the solar zenith, the elevation of the site above sea level, the atmospheric water vapor125

content, and the aerosol optical depth at 700 nm. We denote the global clear sky irradiation of126

Ineichen’s model by Icls(φ, λ, t). Details on the various model parameters are given in Appendix127

A.128

We can now define the clearness index field as the ratio of the solar irradiation field to the129

clear sky model:130

C(φ, λ, t) =
I(φ, λ, t)

Icls(φ, λ, t)
. (3)

The observed data of Eq. (1) may be expressed in terms of the clearness index by131

DC = {C(tk) : k = 1, . . . ,Kt} , (4)

where C(t) is the Pφ × Pλ-matrix defined as132

Ci j(t) =
Ii j(t)

Icls,ij(t)
=

I(φi j, λi j, t)
Icls(φi j, λi j, t)

,

for i = 1, . . . , Pφ, j = 1, . . . , Pλ.133

Our goal is to model the evolution of the clearness index field C(φ, λ, t) based on the observa-134

tions included in Eq. (4). In reality, C(φ, λ, t) is a continuous spatio-temporal process. However,135

we will be focusing on a discrete version of the problem. Namely, we will be modeling the evo-136

lution of the matrix C(t) over thirty minute intervals. Since the clear sky model may be evaluated137

anywhere at will, the solar irradiation field can be recovered in a trivial way from Eq. (3).138

We note that some trends do persist even after switching to the clearness index. In particular,139

the clearness index field exhibits a seasonal trend in its variance similar to that of the solar140

irradiation field. However, this remaining trend is inconsequential, because our goal is to make141

short-term forecasts.142

2.3. Dealing with the Curse of Dimensionality143

The mathematical problem we are facing is the data-driven determination of the dynamics144

of an extremely high-dimensional system. The very small patch of data we are considering145

has 160, 000 ((400 × 400) dimensions. Attempting to learn the dynamics of the clearness in-146

dex directly is not tractable. Clearly, we must resort to some kind of dimensionality reduction147

technique.148

4



The observed data are in the high-dimensional space RPφ×Pλ . However, we expect them to149

be constrained on a low-dimensional manifold embedded in this high-dimensional space. This150

expectation is based on the spatial correlations of the field that are induced by physical laws in-151

volving cloud transportation, nucleation, and annihilation. In the hypothetical scenario of a truly152

Pφ × Pλ-dimensional manifold, there would be no spatial correlations. But such a scenario is not153

supported by the data: displaying successive maps of the solar irradiation field shows evolution154

of persistent moderate scale patterns, which is consistent with nontrivial spatial correlation.155

To be precise, let Mh ⊂ RPφ×Pλ denote the manifold in which the clearness index lives.156

Mathematically, it is defined as157

Mh = {C(t) : for all t}. (5)

We expect the true dimensionality of this manifold to be less than Pφ × Pλ. That is, we expect158

that it can be parametrized with fewer than Pφ × Pλ variables.159

A dimensionality reduction technique should provide two maps: a reduction map, and a160

reconstruction map from and to Mh, respectively. A reduction map R : Mh → RR projects161

the original data to the low-dimensional space RR with R � Pφ × Pλ. A reconstruction map162

C : RR → Mh maps the low-dimensional space back to the original one. A good pair of163

reduction-reconstruction maps (R,C) should have an R as small as possible and also satisfy the164

following property,165

C (R (C(t))) ≈ C(t), (6)

with “≈” being interpreted as “close” in some appropriate norm. In other words, the reconstruc-166

tion map should approximately be the inverse of the reduction map. In reality, we always expect167

some information loss along the way. After finding a good (R,C) pair, our goal will be to model168

the dynamics of the R-dimensional projections of the original data. This is a much easier task169

than dealing directly with C(t). To clarify this point, let us denote by x(t) ∈ RR the reduced170

variables:171

x(t) = R (C(t)) . (7)

Our goal is to capture the dynamics of x(t). The original dynamics can be recovered by passing172

x(t) through the reconstruction map. The observations we have at hand for this are induced by173

Eq. (4) through the reduction map174

Dx = {x(tk) = R (C(tk)) : k = 1, . . . ,Kt} . (8)

This is the topic of Sec. 2.4. For the moment, we focus on finding (R,C).175

The only information available for determining the pair (R,C) is the observed clearness index176

dataset DC given in Eq. (4). The dimensionality reduction technique we will use is the factor177

analysis (FA)[14, 15, 16]. FA can be thought of as a generalization of probabilistic principal178

component analysis (pPCA) [17, 18], a probabilistic interpretation of the celebrated principal179

component analysis (PCA) (see [19, 20] and for a more recent reference [21, Ch. 12.1]). PCA180

works under the assumption that the data manifoldMh is linear. In other words, one may think181

of it as an attempt to approximateMh as being embedded in a low-dimensional affine space. In182

addition, pPCA and FA attempt to characterize the uncertainty of the reduction/reconstruction183

operations. Both fall into the category of latent linear Gaussian models; but pPCA uses the same184

variance to characterize the reconstruction uncertainty, whereas FA uses a different variance for185

each distinct feature.186
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FA works with vectors. Therefore, all quantities must be vectorized before proceeding fur-187

ther. For notational convenience, let vecm,n : Rm×n → Rmn be the vectorization operator. The188

action of the vectorization operator on a matrix A ∈ Rm×n transforms it into a vector a ∈ Rmn, as189

follows:190

a = vecm,n (A) := (A11, . . . , A1n, . . . , Am1, . . . , Amn) . (9)

In addition, we need the inverse transform vec−1
m,n, which transforms a vector a ∈ Rmn into a191

matrix A ∈ Rm×n:192

A = vec−1
m,n (a) :=


a1 . . . an
...

. . .
...

am(n−1)+1 . . . amn

 . (10)

Since we are interested in vectorizing C(t) ∈ RPφ×Pλ , we need to use vecPφ×Pλ . For brevity, we193

define the following:194

vec := vecPφ×Pλ and vec−1 := vec−1
Pφ×Pλ . (11)

Our problem now is to find a reduced representation of the Kt (PφPλ)-dimensional observations:195

196

Dc := {c(tk) = vec (C(tk)) : k = 1, . . . ,Kt} . (12)

In our discussion of FA we follow closely the work of Bishop [21, Ch. 12.2.4]. Let x ∈ RR
197

be the latent reduced representation of an observed clearness index vector c ∈ RPφPλ . In FA, we198

assume that the observed clearness vector c is generated from x as follows,199

p(c|x,W,µ,Ψ) = N (c|Wx + µ,Ψ) , (13)

where W ∈ R(PφPλ)×R and µ ∈ RPφPλ are the reconstruction matrix, and the mean vector, respec-200

tively, and Ψ ∈ R(PφPλ)×(PφPλ) is a diagonal matrix containing the reconstruction variance of each201

component of c (each component is known as a feature). Equation (13) defines a probabilistic202

version of the reconstruction map C.203

To close the model, one must say how x would be generated if c was not observed. In FA,204

one assumes that x is generated from a unit variance Gaussian,205

p(x) = N (x|0, I) , (14)

where I is the unit matrix.206

The reduction map R is also defined probabilistically. One has to compute the posterior of x207

conditioned on c and all the parameters (W,µ,Ψ). This is again a Gaussian of the form208

p(x|c,W,µ,Ψ) = N
(
x|GWT Ψ−1(c − µ),G

)
, (15)

where209

G =
(
I + WT Ψ−1W

)−1
. (16)

FA can be trained efficiently by maximizing the likelihood of Dc of Eq. (12) using the210

expectation-maximization (EM) algorithm [22]. In particular, combining Eqs. (13) and (14) and211

assuming independence of the vector c conditional on the projection on principal components x,212

we need to solve the following maximization problem:213

W∗,µ∗,Ψ∗ = arg max
W,µ,Ψ

p(Dc|W,µ,Ψ), (17)
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where the likelihood term is given by214

p(Dc|W,µ,Ψ) =

Kt∏
k=1

p (c(tk)|W,µ,Ψ) , (18)

with215

p (c(tk)|W,µ,Ψ) =

∫
p (c(tk)|x(tk),W,µ,Ψ) p (x(tk)) dx(tk). (19)

From this point on, for notational convenience we write216

φ∗ = (W∗,µ∗,Ψ∗) (20)

to denote the solution of the maximization problem of Eq. (17). The projection operator is then217

stated as218

R(C) := G∗W∗T (Ψ∗)−1 (vec (C) − µ∗) , (21)

with G∗ as in Eq. (16) evaluated for W = W∗ and Ψ = Ψ∗.219

Certainly the assumption of independence of c conditional on x is arguable, although the220

problem would become much harder if we did not use it. On the other hand, should c be en-221

tirely contained in the space spanned by x for all times t, the assumption would be satisfied.222

The assumption is thus less restrictive the more accurate the PCA projection is. Therefore, we223

anticipate the conditional independence being a good approximation for forecasting large-scale224

behavior, which tends to be contained in the principal components.225

We now come to the problem of determining the appropriate value for R (the dimension of226

the reduced space). This could be attacked in a fully Bayesian manner by following the ideas227

of [23]. In this work, however, we simply fix R to the maximum value we can afford, given the228

constraints of our model. In particular, as R increases so does the number of parameters of the229

reduced dynamics model (see Sec. 2.4). Because of the limited number of observations we have,230

it does not make sense to select an R that is greater than 8. In particular, for R = 8 the proposed231

model has 35 parameters (see Sec. 3) that need to be determined from about 250 observations.232

2.4. Learning the Reduced Dynamics233

The task of this section is to learn the dynamics of the reduced variables x(t) (see Eq. (7))234

based on Dx (see Eq. (8)). We use a model for non-linear time-series known as a recursive235

or dynamic Gaussian process [24, 25]. Such models have been used extensively over the past236

decade in diverse tasks including human motion modeling/tracking [26, 27] and nonlinear signal237

processing [28]. For notational clarity, we assume that the time t counts units of 30 minutes; that238

is, t − 1 means 30 minutes before t, t − 2 means 60 minutes before t, and so forth. We assume239

that the evolution of x(t) obeys the following discrete dynamics:240

x(t) = f (x(t − 1), x(t − 2)) , (22)

where f : RR × RR → RR is an unknown function to be determined from the observations Dx241

of Eq. (8). The reason we have assumed a dependence on x(t − 2) in addition to x(t − 1) is to242

include some information about the velocity field that transports the clearness index. Simply243

including x(t−1) would yield a Markovian model that would not be able to capture any transport244

properties. One can envision models that take into account x(t − 3), x(t − 4), and so on. The rest245

of the discussion can be extended to cover this generic case in a straightforward manner. The246
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computational cost of such an approach increases only moderately. However, the amount of data247

required in order to train the model does increase significantly mostly because of the need of248

consecutive measurements.249

The idea of a recursive Gaussian process is to represent the function f as a Gaussian process250

to be learned from the data. In turn, a Gaussian process may be thought as a nonparametric way251

of performing regression tasks [29]. We denote the input of f collectively by z(t) ∈ R2R, where252

z(t) = (x(t − 1), x(t − 2)) . (23)

Its output is simply x(t). The data we have available for learning f are253

DR = {(z(tk), x(tk)) : tk − tk−1 = 1, tk−1 − tk−2 = 1, k = 3, . . . ,Kt} .

That is, each of the (z(t), x(t)) pairs requires exactly three consecutive measurements of the clear-254

ness index to be available. For future reference, we assume that there are N observations in DR255

as follows:256

DR =
{(

z(i), x(i)
)

: i = 1, . . . ,N
}
. (24)

The core methodology for Gaussian processes aims at learning real functions, that is, func-257

tions with one output. In contrast, here we are dealing with the problem of learning a multioutput258

function. Despite the fact that there is a wealth of methods for learning multioutput functions259

[30, 31, 32, 33]; we chose a simple approach that treats each output dimension of f, indepen-260

dently. In particular, we assume that each of the components fr, r = 1, . . . ,R of f is a Gaussian261

process representing the evolution of the rth principal component262

xr(t) = fr (z(t)) . (25)

Each of these functions can be learned from a fraction of the data contained in DR of Eq. (24).263

In particular, fr can be learned from264

DR,r =
{(

z(i), x(i)
r

)
: i = 1, . . . ,N

}
, (26)

where xr is the rth component of x.265

At this point, we elaborate on how each of the functions fr is constructed based on DR,r of266

Eq. (26) using Gaussian process regression. For notational convenience, we drop the index r267

from any equation in this paragraph. For more details, the reader may consult [34]. Prior to268

seeing the data, we assume that the fr is a draw from a zero mean Gaussian process,269

fr ∼ GP ( fr |0, k(·, ·; θr)) , (27)

where k : R2R ×R2R → R is a covariance function and θr all its parameters. Notice that the same270

covariance function will be used for each r but its parameters θr will be different. The particular271

form of the covariance functions used in the numerical examples is discussed in Sec. 3. The272

likelihood of the observed data is273

p(DR,r |θ) = N (Xr |0,Ar) , (28)

where Xr is the vector of all the xr’s observed inDR,r of Eq. (26),274

Xr =
(
x(1)

r , . . . , x(N)
r

)
, (29)
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and Ar ∈ RN×N is the covariance matrix evaluated at θr:275

Ar,nm = k
(
z(n), z(m); θr

)
. (30)

To train the model, we maximize the logarithm of the likelihood, Eq. (28), with respect to θr,276

θ∗r = arg max
θr

log p(DR,r |θr), (31)

subject to any constraints we might have. Having found a point estimate θ∗r of θr, we have as the277

predictive distribution278

p(xr(t)|z(t),DR,r, θ
∗
r ) = N

(
xr(t)|m∗ (z(t)) , σ∗2 (z(t))

)
, (32)

where m∗ is the predictive mean,279

m∗ (z(t)) = a∗r (z(t)) A∗r
−1Xr, (33)

and σ∗2 is the predictive variance,280

σ∗2 (z(t)) = k
(
z(t), z(t); θ∗r

)
− a∗r (z(t)) A∗r

−1a∗r (z(t))T , (34)

where A∗r is the covariance matrix of Eq. (30) evaluated at θ∗r and a∗r (z(t)) is the cross-covariance:281

282

a∗r (z(t)) =
(
k
(
z(t), z(1); θ∗r

)
, . . . , k

(
z(t), z(N); θ∗r

))
. (35)

Combining the results for every r, we get the multioutput predictive distribution:283

p (x(t)|z(t),DR, θ
∗) =

R∏
r=1

p
(
xr(t)|z(t),DR,r, θ

∗
r
)
, (36)

where θ∗ = {θ1, . . . , θR}. Equation (36) characterizes in a probabilistic manner all the information284

about the dynamics that we are able to get from the observations. It must be noted at this point,285

that the many-step-ahead predictive distribution that is generated by recursive application of286

Eq. (36) is non-Gaussian. This is due to the fact that the mean of Eq. (32) is nonlinear as a287

function of z(t). In Sec. 2.5, we show how iteratively taking samples from Eq. (36) allows us to288

make probabilistic forecasts about the evolution of the reduced dynamics.289

2.5. Forecasting the Quantities of Interest290

Now we come to the problem of forecasting the clearness index. Our predictions are going291

to be probabilistic, and they will be based solely on Eq. (13), Eq. (15), and Eq. (36).292

Assume that we have observed the clearness index at times t0 and t0 − 1; in other words,293

we have observed the matrices C(t0) and C(t0 − 1), respectively. We would like to predict the294

clearness index at future times t = t0 + 1, t0 + 2, . . .. First we need to project the observations to295

the reduced components using Eq. (15),296

x(t0) ∼ p(x(t0)| vec (C(t0)) ,φ∗),
x(t0 − 1) ∼ p(x(t0 − 1)| vec (C(t0 − 1)) ,φ∗), (37)

where φ∗ is defined in Eq. (20), or, in short notation,297

z(t0) = (x(t0 − 1), x(t0 − 2)) . (38)
9



Note that this kind of probabilistic projection accounts for the uncertainty of the reduction map.298

We can take sample paths from the second-order Markov chain defined by the predictive299

distribution of Eq. (36) to produce a sample path n steps long (see Alg. 1). The initial points300

x(t0 − 1) and x(t0) are assumed to be sampled as in Eq. (37). That is, we can produce sample301

paths that go arbitrarily far into the future, albeit in multiples of 30 minutes. Suppose that we have302

taken S > 0 such samples. Let us denote each of them by
{
x(s)(t0 + i)

}n

i=1
, s = 1, . . . , S . These303

can be transformed to sample paths of the clearness index matrix
{
C(s)(t0 + i)

}n

i=1
, s = 1, . . . , S304

using Eq. (13):305

c(s)(t0 + i) ∼ p
(
c(s)|x(s)(t0 + i),φ∗

)
,

C(s)(t0 + i) = vec−1
(
c(s)(t0 + i)

)
.

(39)

Equation 13 accounts for the uncertainty of the reconstruction map. If one wants sample paths306 {
I(s)(t0 + i)

}n

i=1
, s = 1, . . . , S , of the solar irradiation, these can be trivially acquired by using307

Eq. (3),308

I(s)(t0 + i) = C(s)(t0 + i) ∗ Icls(t0 + i), (40)

where Icls(t0 + i) is the Pφ × Pλ matrix containing the evaluation of the clear sky model at time309

t0 + i over the whole patch and “∗” stands for elementwise multiplication of two matrices of the310

same dimensions.311

Algorithm 1 Algorithm taking a single sample path from the second-order Markov chain defined
by Eq. (36)

Require: Observed data: x(t0), x(t0 − 1), number of steps ahead to predict: n ≥ 1.
Ensure: {x(t0 + i)}ni=1 is a sample path of the second order Markov chain defined by Eq. (36).

for i = 1 to n do
Sample x(t0 + i) from p (x(t0 + i)|x(t0 + i − 1), x(t0 + i − 2),DR, θ

∗) as defined in Eq. (36).
end for

3. Numerical Examples312

As discussed in Sec. 2.1, the satellite observations of solar irradiation are obtained from the313

CLAVR-x project. We have been systematically storing the CLAVR-x data since October 10,314

2013. We will use all valid observations until February 25, 2014, to train our model. There315

are 822 such observations. The number is reduced because of two facts: (1) only observations316

that take place 2 hours after sunrise and 2 hours before sunset are retained, (2) there is a gap in317

observations during January 2014 because of technical problems faced by the CLAVR-x group.318

This constitutes our observed solar irradiation dataset DI of Eq. (2). From DI , the observed319

clearness index dataset DC of Eq. (4) is constructed as outlined in Sec. 2.2. The available data320

from February 26, 2014, to May 5, 2014, are used to test our predictions. In particular, we321

observe two consecutive measurements of the solar irradiation, we forecast the next 8 hours, and322

we compare the forecast to what was actually observed.323

Because we would like to compare the performance of our model with one based on ground324

observations, we center our 400 × 400 pixel patch on Lamont, OK.For this particular location325

there exist excellent ground observations of solar irradiation that we can use for validation [35].326

The ground model to which we compare our results is again a recursive GP on the clearness327

10



(a) Observed C(t) (b) Reconstruction C (R (C(t)))

Figure 1: Sample of the clearness index on a 400 × 400 patch around Lamont, OK, on March 3, 2014, at 16:00 UTC (a)
and its reconstruction with R = 8 components (b).

index observed at this site. The ground data used for training span the period from October 1,328

2013, to February 25, 2014.329

The complete satellite data used in this work can be downloaded from: http://www.mcs.330

anl.gov/~ebilionis/solar-irradiance/insolation_ok_400x400.h5. In addition, we331

have created a website http://www.mcs.anl.gov/~ebilionis/solar-irradiance/ that332

contains all 315 forecasts we could make between February 26, 2014 and May 5, 2014. Our333

model is implemnted in Python and the code freely available at https://bitbucket.org/334

ebilionis/solar-irradiation. The code contained therein, replicates all the figures of this335

paper as well as everything that can be found in the accompanying website.336

The observed clearness index dataset DC is used to perform the dimensionality reduction337

task (see Sec. 2.3). In our numerical examples, we have experimented with R = 4 and R = 8338

components without observing any measurable performance gains by adding more complexity.339

For R = 16 components, the likelihood maximization encounters many local maxima because the340

number of parameters is considerably larger. In this case, either a global approach to maximizing341

the likelihood or some form of regularization, for example a fully Bayesian treatment with priors342

on the covariance parameters in (27), is required. We will present results only for the R = 8343

case. The first four principal components ur are visualized in Fig. 2. In Fig. 1(b) we plot the344

reconstruction of the observed clearness index of Fig. 1(a) using just R = 8 components. There345

certainly is a loss of information when we project the high-dimensional description to the low-346

dimensional one. The compression ratio is about 105, however, and we are able to estimate the347

error in prediction by the methods described in the previous section.348

Having constructed the reduced representation of the data, we come to the problem of learn-349

ing the evolution of the reduced dynamics described in Sec. 2.4. In Fig. 3 we illustrate the350

evolution of x(t) of Eq. (7). The stars correspond to observations. Notice that since the collection351

procedure has both weekly and daily irregularities in its protocol, as described in Sec. 2.1, the352

data in Fig. 3 show occasional temporal gaps. As a result, of the 822 observations of x(t), only353

252 remain in DR of Eq. (24) and can, therefore, be used to train the recursive GP of Eq. (22).354

The reason is that we can only use triplets of three consecutive measurements with a 30-minute355

lag, and the gaps in data imply that not all observations are part of such triplets. Such a lim-356

ited number of observations inDR constrains the number of degrees of freedom in the statistical357
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(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

Figure 2: Principal components (vec−1(ur)) 1 to 4.

model and consequently limits the size of the reduced dimension R.358

The covariance function we are using in Eq. (27) has the form359

k(z, z′; θr) = vr,0 +

2R∑
i=1

vr,iziz′i + k0(z, z′; θr,0) + σ2
rδ(z − z′), (41)

where zi and z′i are the i-th component of z and z′, respectively, θr = (vr,0, . . . , vr,2R, θr,0), σr, vr,i ≥360

0, and k0 is a classic covariance function (see [34, Ch. 4]). Here, r = 1, 2, . . . ,R denotes the index361

of the reduced components whose evolution is modeled. The first term in Eq. (41) captures a362

constant bias. The second, nonstationary, term captures a structured linear dependence between363

z and x. The third term captures any nonlinear dependence. The second term can be interpreted364

as the effect of a mean 0 prior on a linear mean term [34, Ch. 2.7]. The last term models the365

possible effects of measurement noise (though we anticipate its effect to be small, since the vector366

x is spatially filtered by the projection on the principal component). The covariance function367

forms k0(·, ·; ·) we have experimented with include the squared exponential, the exponential and368

several covariances belonging to the matern class. None of these choices yielded a significant369

improvement in the final forecasting capabilities of the model. Therefore, we present only those370
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Figure 3: The first four reduced variables x1(t), . . . , x4(t). The time is in UTC, and the stars indicate observations.

results obtained by the exponential covariance function whose form is371

k0
(
z, z′, θr,0

)
= s2

r exp

− 2R∑
i=1

∣∣∣zi − z′i
∣∣∣

`r,i

 , (42)

where θr,0 = (sr, `r,1, . . . , `r,2R). The parameters sr and `r,i may be interpreted as the nonlinear372

part of the signal strength and its length scale with respect to the input variable zi, respectively.373

The number of parameters per r is |θr | = 4R + 3, and the total number of parameters is R(4R + 3).374

For R = 8 this translates to 35 parameters per r that need to inferred from DR,r of Eq. (26). It375

now becomes apparent that the low number of observations (about 250) we have at our disposal376

does not allow for choosing a large R.377

Table 1: The infered parameters of the dynamic model. The ‘-’ stand for values that are less than 10−2, i.e., essentially
zero. The ‘*’ stand for length scales that were estimated to be larger than 10 and, therefore, unimportant.

Parameter 1 2 3 4 5 6 7 8
vr,0 - - - - - - - -
vr,1 0.12 - - - - - - -
vr,2 - 0.24 - - - - - -
vr,3 - - 0.35 - 0.01 - - -
vr,4 - - - 0.20 - - - -
vr,5 - - - - 0.32 - - -

Continued on next page
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Table 1 – Continued from previous page
Parameter 1 2 3 4 5 6 7 8

vr,6 - - - - - 0.24 - -
vr,7 - - - - - - 0.35 -
vr,8 - - - - - - - 0.30
vr,9 1.72 - - - - - - -
vr,10 - 0.89 - - - - - -
vr,11 - - 2.39 - 0.01 - - -
vr,12 - - - 2.01 - - - -
vr,13 - - - - 2.25 - - -
vr,14 - - - - - 2.02 - -
vr,15 - - - - - - 4.27 -
vr,16 - - - - - - - 2.08
s2

r 0.01 0.01 0.02 0.02 0.04 0.04 0.07 0.06
`r,1 0.17 * * * * * * 1.20
`r,2 2.24 2.19 * * 1.22 0.44 * 1.40
`r,3 * * * * 0.87 * * 2.02
`r,4 * * 2.69 * 5.99 * * 3.91
`r,5 * * * 3.79 * 1.37 * *
`r,6 * * * 0.21 * * * *
`r,7 * * * * * * 1.68 *
`r,8 * * * 3.08 0.96 * 0.98 0.46
`r,9 0.11 0.26 1.16 1.26 * 0.78 * *
`r,10 * 1.09 * * * 0.89 0.91 *
`r,11 * 1.65 0.31 3.24 0.80 * * *
`r,12 1.52 0.63 * * * * 2.40 0.96
`r,13 * * * * 0.29 * 8.32 *
`r,14 * * 5.70 0.39 * 0.32 4.07 4.16
`r,15 * * 1.50 4.14 * * 0.75 *
`r,16 * * 0.59 6.07 * * * 0.37
σ2

r - - - - - - - -

The optimization problem of each r (see Eq. (31)) is solved by using the BFGS algorithm378

[36]. To accommodate the nonnegative constraints, we use an exponential change of variable.379

The results are shown in Table 1. The ‘-’ symbols for the vr,i and the σ2
r correspond to values that380

are smaller than 10−2 and, therefore, essentially zero. Furthermore, the ‘*’ symbols for the `r,i381

scale parameters indicate that their corresponding values were greater than 10 and, hence, tend382

to affect the model signficantly less than those with smaller values. Both these choices make383

dependence patterns more visible. We notice that the bias terms vr,0 are effectively zero. This384

result was expected since x(t) are the projections of quantities with mean removed (21). We385

also notice that given the size of the parameters s2
r , the most important effect observed originates386

from the nonstationary component of our covariance function of Eq. (41). This is the part that387

captures the linear part of the correlations between z(t) and x(t). However, the nonlinear part,388

coming from k0 of Eq. (42), is also considerable and accounts for about 3% to 20% of total389

signal strength as measured by sr/
√∑2R

i=0 vr,i + s2
r (though that is not a ratio of the variances390

of the components, which has a far more complicated expression). This effect becomes more391
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Figure 4: Quantile plot for one-step-ahead probabilistic predictions.

important as we go to higher FA coefficients. Another important point to notice is that there is392

no significant exchange of energy between the linear parts of the signal. That is, xr(t) depends393

linearly only on zr(t) = xr(t− 1) and zr+R(t) = xr(t− 2). As expected, the dependence on xr(t− 1)394

is larger than on xr(t − 2). An explanation of this phenomenon appears in Fig. 6. We see that the395

scatterplots of xi(t) and x j(t − 1) for various values of j , i appear to be null plots: essentially396

indistinguishable from the plot of independent random variables. This phenomenon is essentially397

the same for other i , j cases not displayed and this explains the insignificant vr,i coefficients398

for r , i. The length scale parameters `r,i of the nonlinear part are interpreted in a reciprocal399

manner to vr,i. In particular, the larger the length scale, the less important the interaction. As for400

the linear part, again the main effect is that xr(t) depends mostly on xr(t−1) and xr(t−2), though401

here there is a significant number of cross-component dependence coefficients that are not zero.402

The parameter σ2
r was found to be close to zero in all cases. From the first plot in Fig. 6, which403

again is consistent with xi(t) by xi(t−1) plots other than the displayed i = 1, we see that the noise404

levels are low and are likely to be masked by the other variance components. The small value405

of σr does not mean that the uncertainty in our predictions will be low (see Eq. (36) for the way406

that σ2
r affects the predictive variance). Even if these parameters were perfectly known and σr407

were 0, the uncertainty could go to 0 only in the limit of infinite data.408

We can now make forecasts for an arbitrary number of steps ahead. The predictive distri-409

bution of our model is non-Gaussian because the reduced dynamics are non-linear. However,410

it is still possible to test its ability to capture the observed variation of the solar irradiance by411

employing numerical methods. In lack of a better alternative, we focus our attention to the solar412

irradiance at the center of the computational patch. Consider the clearness indices C(t − 1) and413
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Figure 5: Comparison of the averaged continuous ranked probability score (CRPS), as a function of the number of steps
ahead of the forecast, for the satellite (red) and the ground (green) model.

C(t − 2) we observe at times t − 1 and t − 2, respectively. Let Icenter, model(t) and Icenter,obs(t) the414

predicted and the observed solar irradiance, respectively, at the center of the computational patch415

at time t. Consider the cumulative distribution function (CDF) of Icenter,model(t):416

Ft(I) = P[Icenter, model(t) ≤ I]. (43)

If our model predicted the observations perfectly, that is if Icenter,obs(t) was indeed generated from417

our model, then Ft(Icenter,obs(t)) would be distributed uniformly between 0 and 1 independently of418

t. Unfortunately, the CDF Ft(I) is not known analytically, so we need to approximate it. This is419

accomplished by obtaining S = 1028 samples of Icenter,model(t), {I
(s)
center(t)}

S
s=1, from the predictive420

distribution conditional on C(t − 1) and C(t − 2) following the instructions of Sec. 2.5. Using421

these samples, we approximate Ft(I) via the empirical CDF,422

F̂t,S (I) =
1
S

S∑
s=1

1
{I(s)

center,model(t)<I}(I), (44)

where 1A(x) is the indicator function of the set A, i.e. 1A(x) = 0 if x ∈ A and 0 otherwise.423

Now, we can compare the quantiles of F̂t,S (Icenter,obs(t)) with the quantiles of the uniform distri-424

bution between 0 and 1. We do this for all observations we have in our validation set, i.e., for425

all useful satellite measurements of the solar irradiation between February 26, 2014, and May426

5, 2014. The result is shown in Fig. 4. The probability distributions agree in the sense that the427

measures induced by them are compatible: intervals of certain length on the x axis (which are428
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(a) x1(t) versus x1(t − 1) scatterplot (b) x2(t) versus x1(t − 1) scatterplot

(c) x5(t) versus x2(t − 1) scatterplot (d) x8(t) versus x3(t − 1) scatterplot

Figure 6: Scatterplots of xi(t) by x j(t − 1), for (i, j) = (1, 1), (1, 2), (2, 5), (3, 8)

the nominal lengths of the corresponding prediction intervals) are mapped into comparable inter-429

vals. There seems to be a moderate to small amount of misspecification – misfit in the quantile430

plot in Fig. 4 – that does not disappear as the amount of data would increase, a situation not431

uncommon in atmopheric and environmental models. The previous observation indicates that,432

however, the prediction intervals, while not having the prescribed nominal coverage would have433

one comparable to it, which means that the variability would be reasonaby well captured.434

At this point, we would like to compare the forecast of our satellite model to that of a model435

that is built using only pointwise ground observations. In particular, we would like to know if436

making use of the satellite observations does improve the forecast quality and to what extent.437

Toward this end, we construct a solar irradiation model using a recursive GP model trained438

only on ground observations. This model is equivalent to our satellite model when using only439

one component which is obtained directly from the data (i.e., no-dimensionality reduction is440

necessary). We will refer to it as the ground model. It has a total of 7 parameters which we441

learn using 350 ground observations. Next, we compute the continuous ranked probability score442

(CRPS) [37] of both the satellite and ground models and compare them to each other. The443

CRPS can be thought of as an extension of the mean absolute error (MAE) score to probabilistic444

forecasts. It is essentially a measure of the closeness of the predictive distribution to the one445

generated by the data. The smaller it is, the more accurately the model captures the underlying446
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(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

Figure 7: February 27, 2014 (sunny day): Median and 95% prediction interval for the reduced variables x(t) on February
27, 2014.

stochastic process. Extending a little bit the notation of the previous paragraph, we take S = 1028447

samples of Icenter(t, t′), {I
(s)
center,a(t, t′)}, s = 1, . . . , S –where a stands for either the “satellite” or448

“ground” model– from the predictive distribution conditional on C(t′) and C(t′ + 1), if dealing449

with the satellite model, or Icenter,ground,obs(t′) and Icenter,ground,obs(t′ + 1), if dealing with the ground450

model, following the instructions of Sec. 2.5. The discrete version of CRPS is given by [37]:451

CRPSa,S (t, t′) =
1
S

S∑
s=1

|Icenter,a(t, t′)(s) − Icenter,a,obs(t)|

−
1

2S 2

S∑
s=1

S∑
q=1

|Icenter,a(t, t′)(s) − Icenter,a(t, t′)(q)|.

Let n be the number of steps ahead for which we wish to make a prediction of the solar irradiation.452

We will just refer to n as the “number of steps ahead”. In Fig. 5, we plot the mean of the CRPS453

–the mean is over the part of the validation set recorded at 16:00UTC– as a function of the454

number of steps ahead, n. That is, we plot the mean CRPSa,S (n) of CRPSa,S (t′ + n, t′) for t′455

in the validation set corresponding to time 16:00UTC. We observe that the ground model does456

better at the very beginning, but that its performance gradually deteriorates. This is due to the457
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Figure 8: February 27, 2014 (sunny day): Starting with two observations on February 27, 2014, at 16:00 and 16:30 UTC,
we show the forecasts of the clearness index for 17:00 and 19:00 UTC. The left column shows the mean forecast and the
right column the standard deviation.

fact that the satellite model includes additional errors rising from the dimensionality reduction458

step. For longer forecasts, however, the satellite model does significantly better. The remarkable459

fact is that its CRPS performance remains more or less constant over time. These conclusions460

are reached again via Figs. 11 and 16 and the corresponding discussion in the text.461

Now, we show results for two representative days: February 26, 2014, which was a sunny462

day, and March 1, 2014, which was a cloudy day. To initiate our forecast, we observe the clear-463

ness index at 16:00 and 16:30 UTC. Then, we make predictions for 8 hours ahead by sampling464

Eq. (36) recursively as explained in Alg. 1. For the computation of the quantiles we present here,465

we use 1,000 such samples.466

Forecast for February 27, 2014 (sunny day). Figure 7 depicts the evolution of the median and467

95% prediction intervals of our prediction for the first four components of x(t). We notice that468

the observed values always fall within the error bars. Fig. 8 shows the evolution of the mean and469

the standard deviation of C(t), respectively. Since the day is sunny, the mean remains relatively470

constant. Notice that the standard deviation of C(t) does increase with time but not very fast. In471

Fig. 9 we compare the observed C(t) with our mean predictions at three different times. Notice472

that high-frequency features are not captured properly. This result is expected, however, since473

the model is built on the projected C(t). In Fig. 10, we compare the error between projection474

of C(t) and our mean predictions, with the forecasted standard deviation. We notice that the475

19



error is indeed well bounded by the standard deviation, which shows that our model is at least476

conservative. In Fig. 11 we compare our point predictions for the solar irradiation at Lamont, OK,477

with the predictions of the ground model. We see that the mean prediction is considerably better478

for our model compared with the one that uses only data from the prediction site, particularly479

a few hours after the start of the forecast window. Moreover, the standard deviation of the480

global data approach is smaller. We note here that a discrepancy exists between the satellite481

and the ground observations. This is expected, since the satellite solar irradiation is averaged482

over a square kilometer while the ground measurement is almost pointwise. Overall we find that483

the uncertainty margins are improved and that the predictions are vastly improved when using484

satellite data compared with only site data.485

Forecast for March 1, 2014 (cloudy day). Figure 12 depicts the evolution of the median and486

95% prediction intervals of our prediction for x(t). We notice that x(t) takes more extreme values487

compared with Fig. 7. As a result, some of the observations and, in particular, those of x2(t)488

do not always fall within the error bars, though their errors are certainly on the order of the489

standard deviations. Fig. 13 shows the evolution of the mean and the standard deviation of C(t),490

respectively. Here we notice a much larger variation of the mean prediction compared with491

Figure 8.In addition, the standard deviation increases much more rapidly. In Fig. 14 we compare492

the observed C(t) with our mean predictions at three different times. Here, the error is much493

larger, and the standard deviation captures the order of the larger errors but not their pattern,494

though it does so for the large feature persistent error. A look at the projected version of the495

error (see Fig. 15) validates this observation. Another interesting property is that the standard496

deviation increases faster near the boundaries of the patch than at the center. The cause is that497

effects near the boundary depend also on the clearness index field that is outside our small patch.498

In Fig. 16 we compare our point predictions for the solar irradiation at Lamont, OK, with that of499

a recursive GP model based only on ground observations. The mean prediction has smaller error500

for the satellite data compared with the site data, whereas the standard deviation is significantly501

smaller after a couple of hours. The performance of our model is reasonable and certainly better502

than the model based on ground observations. However, sharp variations such as the ramps503

occurring at 20:00 UTC are not captured. We believe that in order to capture ramp events one504

has to model the finer frequencies, which is not done in the version of the model. We note here505

that ramps could not be captured even with R = 8, which was the largest model that our limited506

observations allowed us to train. The discrepancy between the measurements at 16:00 and 16:30507

UTC and the starting points of our forecasts is due to the fact that with R = 8 the clearness index508

cannot be reconstructed perfectly from the reduced space. Such a discrepancy is present also at509

16:00 UTC in Fig. 11 but much less pronounced. However, we also note that our pPCA approach510

reasonably captures that uncertainty.511

In any case, we again observe a significant improvement in forecast quality in comparison to512

the model that uses only site data, though in this case the improvement is more pronounced in513

the variance estimation.514

4. Conclusions515

We presented a probabilistic forecast model for solar irradiation based on satellite observa-516

tions. The approach is based on separate modeling of the clear sky model and of the clearness517

index, the ratio of irradiation and the clear sky model. Since good clear sky models exist, only518

the clearness index needs to be modeled statistically. The resulting model yields probabilistic519
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Figure 9: February 27, 2014 (sunny day): Comparison of the real absolute error in the prediction (left) with the standard
deviation of our forecast (right) on February 27, 2014.

estimates of the irradiation field every thirty minutes starting from consecutive satellite measure-520

ments. The model is based on a probabilistic PCA approach to reduce the forecast dimension,521

followed by a Gaussian process approach to learn its dynamics. Using ground data from Lamont,522

OK, we demonstrate that the model results in better predictions and uncertainty estimates for the523

solar radiation compared with models that use only ground data at the prediction site, which is524

the prevailing forecast method for solar energy operations. Moreover, since the data are avail-525

able over the entire United States, forecasts can be produced at any site in the United States with526

(what we anticipate) to be comparable accuracy, without needing ground measurements. This527
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Figure 10: February 27, 2014 (sunny day): Comparison of the absolute projected error in the prediction (left) with the
standard deviation of our forecast (right) on February 27, 2014.

may prove important for very distributed solar energy systems.528

This initial investigation can be improved in multiple ways, not the least of which is access529

to more data as the AVHRR instrument acquires more measurements. This extra data will allow530

us to consider more components and richer covariance functions, and, in particular, to model the531

larger space frequencies which we currently do not do as well as the satellite resolution errors.532

As a result, we may be able to represent higher-fidelity spatial features such as the ramps that we533

cannot capture well for the March 1, 2014, forecast.534

We note, however, that in some applications solar energy sources are spread over large (and535
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Figure 11: 27 February, 2014 (sunny day): Comparison of our point forecast at Lamont, OK, with a recursive Gaussian
process model based solely on ground observations.

perhaps well-chosen) areas. In such cases, the fact that we capture well the low-frequency com-536

ponents of the error (interpreted here as the projection on the space of the principal components,537

as is seen in Figs. 10 and 15 indicates that spatially aggregated statistics of available solar power538

are likely to be well captured. However, we would have no way of obtaining that much ground539

data to validate the predictions. Nevertheless, looking at the plots of the ground irradiation and540

satellite radiation data, we find a good agreement, which indicates that this is likely to be true.541

Moreover, one would need to choose a pattern for the solar plants, which requires obtaining some542

realistic configurations; this will be the subject of future analyses.543

Another interesting direction is to combine these measurements with weather forecast in-544

formation, which –by itself– has difficulties in representing accurately irradiation information545

because of poor high-resolution cloud forecasting. However, since weather forecast may cap-546

ture certain large-scale trends (e.g. wind), such information when combined with this approach547

conceivably may result in better forecasts.548
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Figure 12: March 1, 2014 (cloudy day): Median and 95% prediction interval for the reduced variables x(t) on March 1,
2014.
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Appendix A. Details of the clear sky model558

As discussed in Sec. 2.2, we use Ineichen’s model [12] as our clear sky model. Here we559

briefly discuss the details of its implementation that pertain to this work. For the actual model,560

the reader may consult the original reference. Ineichen’s model requires the solar zenith, the561

extraterrestrial irradiation, the surface elevation, the water vapor content, and the aerosol optical562

depth at 700 nm.563

The solar zenith is computed by using the Solar Position Algorithm (SPA) [38]. The extrater-564

restrial irradiation is modeled as [39]565

Iext(t) = I0

(
R(t)
Rav

)2

, (A.1)
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Figure 13: March 1, 2014 (cloudy day): Starting with two observations on March 1, 2014, at 16:00 and 16:30 UTC, we
show the forecasts of the clearness index for 17:00 and 19:00 UTC. The left column shows the mean forecast and the
right column the standard deviation.

where R(t) is the Earth-Sun distance at time t, I0 = 1361 W/m2 and Rav = 1.0000010178 AU is566

the average Earth-Sun distance. The Earth-Sun distance is also computed by using SPA. Since567

the sensitivity of the model to the surface elevation is small and the patch of the CONUS scan568

we are concentrating on is relatively flat, we take the surface elevation to be constant and equal569

to 320 m. The water vapor content and the aerosol optical depth at 700 nm are also taken to be570

constant at 0.3 cm and 0.15, respectively.571
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